Magnetic plasmon induced transparency in three-dimensional metamolecules
نویسندگان
چکیده
In a laser-driven atomic quantum system, a continuous state couples to a discrete state resulting in quantum interference that provides a transmission peak within a broad absorption profi le the so-called electromagnetically induced transparency (EIT). In the fi eld of plasmonic metamaterials, the subwavelength metallic structures play a role similar to atoms in nature. The interference of their near-fi eld coupling at plasmonic resonance leads to a plasmon induced transparency (PIT) that is analogous to the EIT of atomic systems. A sensitive control of the PIT is crucial to a range of potential applications such as slowing light and biosensor. So far, the PIT phenomena often arise from the electric resonance, such as an electric dipole state coupled to an electric quadrupole state. Here we report the fi rst three-dimensional photonic metamaterial consisting of an array of erected U-shape plasmonic gold nanostructures that exhibits PIT phenomenon with magnetic dipolar interaction between magnetic meta molecules. We further demonstrate using a numerical simulation that the coupling between the different excited pathways at an intermediate resonant wavelength allows for a π phase shift resulting in a destructive interference. A classical RLC circuit was also proposed to explain the coupling effects between the bright and dark modes of EIT-like electromagnetic spectra. This work paves a promising approach to achieve magnetic plasmon devices.
منابع مشابه
Plasmon coupling in vertical split-ring resonator metamolecules
The past decade has seen a number of interesting designs proposed and implemented to generate artificial magnetism at optical frequencies using plasmonic metamaterials, but owing to the planar configurations of typically fabricated metamolecules that make up the metamaterials, the magnetic response is mainly driven by the electric field of the incident electromagnetic wave. We recently fabricat...
متن کاملGyromagnetically induced transparency of metasurfaces.
We demonstrate that the presence of a (gyro) magnetic substrate can produce an analog of electromagnetically induced transparency in Fano-resonant metamolecules. The simplest implementation of such gyromagnetically induced transparency (GIT) in a metasurface, comprised of an array of resonant antenna pairs placed on a gyromagnetic substrate and illuminated by a normally incident electromagnetic...
متن کاملBulk plasmon polariton-gap soliton-induced transparency in one-dimensional Kerr-metamaterial superlattices.
We have performed a theoretical study of various arrangements of one-dimensional heterostructures composed by bilayers made of nondispersive (A)/dispersive linear (B) materials and illuminated by an obliquely incident electromagnetic wave, which are shown to exhibit a robust bulk-like plasmon-polariton gap for frequencies below the plasma frequency. The origin of this gap stems from the couplin...
متن کاملشفافیت القایی الکترومغناطیسی در سیستم پلاسمونیکی متشکل از سه تیغه موازی فلز- دی الکتریک- فلز: برهمکنش پلاسمون- پلاسمون
In this paper, electromagnetically induced transparency (EIT) in a system consisting of associated arrays of parallel slabs (metal-dielectric-metal) is studied. The transmission coefficient, the reflection coefficient and the absorption coefficient as function of the incident light frequency by using the transfer matrix method is calculated and numerically discussed. Influence of the thickness ...
متن کاملDNA-Assembled Nanoparticle Rings Exhibit Electric and Magnetic Resonances at Visible Frequencies
Metallic nanostructures can be used to manipulate light on the subwavelength scale to create tailored optical material properties. Next to electric responses, artificial optical magnetism is of particular interest but difficult to achieve at visible wavelengths. DNA-self-assembly has proved to serve as a viable method to template plasmonic materials with nanometer precision and to produce large...
متن کامل